EPS應(yīng)急電源中均衡式充電裝置的設(shè)計(jì)與實(shí)現(xiàn)
摘要:簡(jiǎn)要介紹了均衡式充電裝置的結(jié)構(gòu)原理及特點(diǎn), 詳細(xì)闡述了應(yīng)用于這種均衡充電模式的單元充電模塊的設(shè)計(jì)要求、工作原理及設(shè)計(jì)方法,最后給出了試驗(yàn)數(shù)據(jù)并簡(jiǎn)要分析了試驗(yàn)結(jié)果。
1 概述
EPS應(yīng)急電源是保證工業(yè)與民用建筑平時(shí)和火災(zāi)斷電情況下消防設(shè)備和設(shè)施正常工作的電源,它是各種消防設(shè)備和設(shè)施能否正常運(yùn)行的重要保障。EPS應(yīng)急電源一般由主電源和應(yīng)急電源兩部分組成。主電源一般來(lái)自電力系統(tǒng)或電網(wǎng), 正常時(shí),消防用電設(shè)備由主電源供電。應(yīng)急電源的作用是當(dāng)主電源發(fā)生故障而停電時(shí), 保證各種消防設(shè)備( 消防給水、消防電梯、防排煙設(shè)備、應(yīng)急照明和疏散指示標(biāo)志、應(yīng)急廣播、電動(dòng)的防火門窗、卷簾、自動(dòng)滅火裝置) 和消防控制室等仍能繼續(xù)運(yùn)行。在消防電源中設(shè)置EPS應(yīng)急電源是確保消防電源向消防用電負(fù)荷可靠供電的重要措施之一。
目前, 消防應(yīng)急電源主要有三種類型: ①獨(dú)立正常電源的專用饋電線路; ②自備柴油發(fā)電機(jī)組; ③由蓄電池組構(gòu)成的交、直流供電電源。由蓄電池組作為備用電能的應(yīng)急電源( 即所謂的靜態(tài)EPS) 可分為直流靜態(tài)EPS和交流靜態(tài)EPS兩種。
直流靜態(tài)EPS由于應(yīng)急時(shí)只能輸出直流電源, 配置消防設(shè)備時(shí)需選用交直流兩用設(shè)備, 因此其應(yīng)用受到一定的限制。交流靜態(tài)EPS由于設(shè)有交流逆變系統(tǒng), 應(yīng)急時(shí)能夠輸出交流電源, 對(duì)消防用電負(fù)荷適應(yīng)性強(qiáng), 因此其應(yīng)用較為廣泛, 它可以取代500kW及以下的備用柴油發(fā)電機(jī)組作為應(yīng)急備用電源。靜態(tài)EPS與備用柴油發(fā)電機(jī)組相比, 具有免維護(hù)、無(wú)人值守、應(yīng)急供電切換時(shí)間短、供電質(zhì)量好、可靠、安全等一系列優(yōu)點(diǎn), 是較理想的應(yīng)急電源。
近年來(lái), 隨著電力電子技術(shù)的發(fā)展, 電力電子器件和產(chǎn)品價(jià)格的低廉化, 靜態(tài)EPS, 特別是交流EPS逐漸成為消防應(yīng)急電源的重要類型。目前,這種靜態(tài)EPS已逐步取代使用壽命短、維護(hù)保養(yǎng)不方便、造價(jià)比靜態(tài)集中供電式EPS高出30%~50%的分散式鎳鎘電池應(yīng)急電源。從其發(fā)展趨勢(shì)來(lái)看,它將部分取代柴油發(fā)電機(jī)組作為消防應(yīng)急后備電源。
不管是直流還是交流EPS, 對(duì)于蓄電池組實(shí)現(xiàn)最佳充電、保養(yǎng)和維護(hù),以確保蓄電池組在應(yīng)急情況下能夠處于滿容量狀態(tài)是保障EPS應(yīng)急電源可靠工作的關(guān)鍵。目前, 在我國(guó)消防電源中大量使用的靜態(tài)EPS, 對(duì)于蓄電池組的充電一般采用串聯(lián)集中式充電方式, 即由一個(gè)集中式充電裝置實(shí)現(xiàn)對(duì)串聯(lián)電池組充電, 如圖1所示。這種充電方式的優(yōu)點(diǎn)是充電設(shè)備簡(jiǎn)單、造價(jià)低。不足之處是對(duì)電池組充電不均衡, 容易出現(xiàn)部分電池過(guò)充、部分電池欠充, 即充電不足的現(xiàn)象, 從而導(dǎo)致電池組充電容量不足、電池?fù)p壞或電池組的壽命縮短。
圖1 蓄電池組集中式充電模式示意圖
為克服集中充電模式的不足, 本文提出一種均衡式充電模式。這種充電模式對(duì)每一節(jié)電池都配置一個(gè)單獨(dú)的充電器。通過(guò)對(duì)每節(jié)電池的單獨(dú)充電和維護(hù)來(lái)保證電池組實(shí)現(xiàn)均衡充電, 不會(huì)出現(xiàn)各節(jié)電池充電不均衡的現(xiàn)象。另外, 通過(guò)對(duì)各個(gè)充電模塊的完善設(shè)計(jì), 就能保證各節(jié)電池不會(huì)出現(xiàn)欠充或過(guò)充的現(xiàn)象。
2 均衡式充電裝置的結(jié)構(gòu)和工作原理
圖2所示是本文提出的一種蓄電池組均衡充電模式結(jié)構(gòu)示意圖, 圖中CM表示充電器或充電模塊。在這種均衡式充電模式中, 對(duì)電池組的每一節(jié)電池都單獨(dú)配置一個(gè)充電模塊, 它是均衡式充電裝置的核心。在應(yīng)急電源中, 當(dāng)處于非應(yīng)急狀態(tài)運(yùn)行時(shí), 應(yīng)急電源的輸出通過(guò)開關(guān)直接由市電供給, 這時(shí), 逆變器不工作, 各充電模塊給各節(jié)相應(yīng)的電池進(jìn)行充電或浮充電。當(dāng)應(yīng)急電源處于應(yīng)急工作狀態(tài)時(shí), 由電池組給逆變器供電, 通過(guò)逆變器輸出應(yīng)急逆變交流電源。這時(shí), 由于各充電模塊無(wú)交流輸入, 處于不工作狀態(tài), 不影響蓄電池組的放電工作狀態(tài)。
圖2 電池組均衡式充電模式示意圖
在這種充電模式設(shè)計(jì)中, 各充電模塊的設(shè)計(jì)是關(guān)鍵。充電模塊的主要作用是對(duì)每節(jié)電池進(jìn)行充電和浮充電。根據(jù)蓄電池的充電要求, 當(dāng)電池端電壓低于標(biāo)稱電壓或小于最高容許充電電壓時(shí), 要求充電模塊具有恒流輸出功能, 實(shí)現(xiàn)對(duì)電池的恒流充電, 即所謂的主充電; 而當(dāng)電池電壓達(dá)到電池最高容許充電電壓后, 這時(shí)要求充電模塊具有恒壓輸出功能, 使電池處于恒壓充電狀態(tài), 即所謂的均充電。因此, 充電模塊應(yīng)具有輸出穩(wěn)壓和穩(wěn)流輸出功能。另外, 本文所設(shè)計(jì)的充電模塊還應(yīng)具有如輸出狀態(tài)指示、輸出斷線告警、交流輸入故障等相關(guān)的指示和告警功能。
由于在均衡式充電模式中, 每個(gè)充電模塊僅負(fù)責(zé)一節(jié)電池的充電, 因此充電模塊輸出電壓設(shè)計(jì)成12V標(biāo)稱輸出電壓。輸出電流則根據(jù)電池的容量來(lái)確定。由于本均衡充電裝置主要是針對(duì)100A·h容量以下的EPS應(yīng)急電源應(yīng)用而設(shè)計(jì)的, 因此, 充電模塊的額定輸出電流一般不超過(guò)10A.這樣充電模塊的功率最大一般為200W左右。
3 充電模塊設(shè)計(jì)
在充電模塊的設(shè)計(jì)中, 應(yīng)該說(shuō)采用線性穩(wěn)壓電源、相控式晶閘管電源和高頻開關(guān)電源均能滿足上述提到的充電功能要求。考慮到裝置的體積、重量、結(jié)構(gòu)和維護(hù)的方便性, 本均衡充電裝置的充電模塊采用了高頻開關(guān)電源。由于模塊需要的功率不大, 在開關(guān)電源形式選擇上采用了反激式高頻開關(guān)電源。這種電源具有體積小, 效率高等特點(diǎn)。
一般的反激式高頻開關(guān)電源都設(shè)計(jì)成穩(wěn)壓輸出, 在電池充電應(yīng)用中, 要加入外圍電路實(shí)現(xiàn)恒流限壓充電。其原理結(jié)構(gòu)框圖如圖3所示, 它主要由交流輸入整流電路、高頻反激式變換器、電流型脈寬調(diào)制電路、輸出反饋控制電路和保護(hù)告警及狀態(tài)指示等電路組成。下面分別介紹主要組成電路設(shè)計(jì)和工作原理。
圖3 充電模塊原理結(jié)構(gòu)示意圖
3.1 高頻反激式變換器
高頻反激式變換器電路如圖4所示。在反激變換器中一般有兩種工作方式: 完全能量轉(zhuǎn)換和不完全能量轉(zhuǎn)換。當(dāng)變換器輸入電壓在一個(gè)較大的范圍內(nèi)發(fā)生變化, 或負(fù)載在較大范圍內(nèi)變化時(shí), 必然跨越兩種工作方式, 因此要求變換器能在兩種工作方式中都能穩(wěn)定工作。
圖4 反激式變換電路。
圖5所示的是工作在完全能量轉(zhuǎn)換狀態(tài)下, 開關(guān)管Q1上的電壓與電流波形。在這種工作模式下, 每個(gè)開關(guān)周期被分為三個(gè)階段( 分別如圖中1、2、3所示) 。在階段1, 開關(guān)管導(dǎo)通, 變壓器原邊電流沿斜線上升到峰值電流, 并將能量?jī)?chǔ)存在高頻變壓器中。
在階段2, 開關(guān)管關(guān)斷, 上一階段中變壓器儲(chǔ)存的能量傳遞給副邊。由于漏感的存在會(huì)產(chǎn)生尖峰電壓, 所以實(shí)際電路中利用鉗位電路( 圖4中的C1、R4、D2、R5、C2) 把電壓鉗制在開關(guān)管的漏- 源擊穿電壓值以下。在階段3, 感應(yīng)電壓降為零。變壓器已將在階段1儲(chǔ)存的能量全部釋放, 但該電壓變化又通過(guò)激勵(lì)由雜散電容和初級(jí)電感構(gòu)成的諧振電路, 產(chǎn)生衰減振蕩波形。
圖5 完全能量轉(zhuǎn)換的開關(guān)管電壓及電流波形
圖6所示的是工作在不完全能量轉(zhuǎn)換狀態(tài)下, 開關(guān)管的電壓及電流波形在這種工作模式下, 每個(gè)開關(guān)周期被分為兩個(gè)階段( 分別如圖中1和2所示) 。在階段1, 開關(guān)管開始導(dǎo)通時(shí), 由于變壓器還儲(chǔ)存有能量而使開始電流不為零。
變壓器在這階段繼續(xù)儲(chǔ)存能量。在階段2, 開關(guān)管關(guān)斷。上一階段儲(chǔ)存的能量傳遞到副邊, 但沒(méi)有把變壓器里面的能量完全釋放, 所以不存在完全能量轉(zhuǎn)換方式中的第3階段。
圖6 不完全能量轉(zhuǎn)換的開關(guān)管電壓及電流波形
在反激式變換電路設(shè)計(jì)中應(yīng)注意以下問(wèn)題:
a. 當(dāng)反激式變換器以連續(xù)方式工作時(shí), 有相當(dāng)大的直流電流成分, 這時(shí),必須有氣隙。適當(dāng)?shù)臍庀犊梢苑乐癸柡蜖顟B(tài)并平衡直流電流成分;b. 在緩沖器中( 圖中C1、R4、D2) , 通過(guò)減少R4值或漏電感值, 可以抑制鉗位電壓的升高趨勢(shì)。但不能把鉗位電壓設(shè)計(jì)得太低, 因?yàn)榉醇み^(guò)沖電壓提供一個(gè)附加強(qiáng)制電壓來(lái)驅(qū)動(dòng)電能進(jìn)入副邊電感, 使副邊反激電流迅速增大, 提高變壓器的傳輸效率;c. 由于反激式變換器存在較大的紋波電壓, 太大的紋波電壓會(huì)使控制電路工作不夠穩(wěn)定, 所以增加LC濾波器一定程度地降低了紋波。
3.2 電流控制型脈寬調(diào)制器
電流控制型脈寬調(diào)制器電路原理如圖7所示。電路核心是3842系列電流控制型脈寬控制芯片。關(guān)于該芯片的結(jié)構(gòu)及特點(diǎn)可參閱文獻(xiàn),這里不再贅述。
圖7 電流控制型脈寬調(diào)制器電路
反激變換器加假負(fù)載是必要的, 但對(duì)于解決空載振蕩效果不大, 因?yàn)榧儇?fù)載不能設(shè)計(jì)太大, 會(huì)影響整個(gè)變換器的效率。
假負(fù)載加上以后, 變換器只是工作在很輕負(fù)載條件下, 振蕩依然存在。這種振蕩是一種被稱為Burst Mode的模式, 也就是間歇工作模式。發(fā)生這種現(xiàn)象是由于空載、輕載時(shí)開關(guān)管開通時(shí)間過(guò)大, 引起輸出能量太大造成電壓過(guò)沖太大, 需要較長(zhǎng)的時(shí)間去恢復(fù)到正常電壓, 因此開關(guān)管需停止工作一段時(shí)間。對(duì)于使用3842系列芯片的反激變換器來(lái)說(shuō),有一個(gè)較為有效的解決辦法。在鋸齒波輸出腳和電流檢測(cè)腳之間接入一個(gè)PF級(jí)的電容( 圖7中的C6) ,利用鋸齒波下降沿產(chǎn)生的抽流作用將檢測(cè)到的電流信號(hào)中因?yàn)殚T極驅(qū)動(dòng)產(chǎn)生的信號(hào)剔除, 從而可以使得開關(guān)管得到一個(gè)最小的開通時(shí)間去保持輸出, 雖然也可能會(huì)出現(xiàn)間歇工作模式, 但是因?yàn)槊總(gè)開關(guān)周期傳遞到副邊的能量很小, 所以不會(huì)出現(xiàn)振蕩現(xiàn)象。
3.3 輸出反饋控制器
輸出控制器如圖8所示。圖8中利用兩個(gè)PI 調(diào)節(jié)器實(shí)現(xiàn)恒流限壓充電。
因?yàn)樵O(shè)計(jì)為單電池充電, 輸出最高電壓為15V, 可以直接用變換器輸出作為控制電路的電源, 所以IC1采用了單電源運(yùn)算放大器。R3、R4及PTI組成充電電流調(diào)節(jié), 可以實(shí)現(xiàn)電流在一定范圍內(nèi)調(diào)節(jié)。R7、R8、PTU組成浮充電壓調(diào)節(jié), 可以實(shí)現(xiàn)浮充電壓在一定程度調(diào)節(jié), 因?yàn)椴煌姵氐母〕潆妷合嗖畈淮螅?這個(gè)調(diào)節(jié)范圍不用太大, 而且最低電壓要保證運(yùn)放的可靠工作。作為電流、電壓調(diào)節(jié)的基準(zhǔn)電壓可以用TL431實(shí)現(xiàn)。光耦U1應(yīng)該采用線性度比較好的光電耦合器。光耦的電流傳輸比大小基本沒(méi)有什么影響, 因?yàn)镮C1的放大倍數(shù)足夠大, 只要U1原邊電阻足夠小,就可在副邊產(chǎn)生足夠大的電流信號(hào)。至于R11電阻的選擇, 只能選擇一個(gè)范圍, 即IC1運(yùn)放的輸出電壓從最小值到最大值變化, 則電阻的選擇要求使原邊電流在某個(gè)范圍內(nèi)變化, 反映到副邊的電流最大值要求使得UC3842 ( 圖7中的IC1) 的1腳能夠降到零。所以此電阻有一個(gè)最大選擇值, 當(dāng)然阻值越小增益越高, 但增益過(guò)高會(huì)比較容易引起電路振蕩。選擇以后還需要按照電路的工作情況進(jìn)行調(diào)整。
圖8 輸出反饋控制電路
3.4 充電浮充電狀態(tài)指示
對(duì)于本應(yīng)用中, 只要比較反饋控制電路里的兩個(gè)PI調(diào)節(jié)器( 圖8中IC1A和IC1B) 的輸出端電壓高低, 就能實(shí)現(xiàn)狀態(tài)指示。當(dāng)IC1A輸出電壓高于IC1B輸出電壓時(shí), 電流反饋起作用, 電路處于充電狀態(tài)。
反之, 處于浮充狀態(tài)。
3.5 外部斷線告警
外部斷線告警電路如圖9所示。在電池正常接在充電器輸出端時(shí), 輸出限制在電池最大浮充電壓以下, R3上電壓低于5V, 比較器IC1輸出高電平。當(dāng)發(fā)生斷線故障時(shí), R3上電壓會(huì)升高到5V以上, 比較器輸出低電平。
圖9 外部斷線告警電路
4 試驗(yàn)結(jié)果
穩(wěn)流和穩(wěn)壓精度測(cè)試數(shù)據(jù)見表1和表2.
表1 穩(wěn)流精度測(cè)試數(shù)據(jù)
表2 穩(wěn)壓精度測(cè)試數(shù)據(jù)
測(cè)試結(jié)果表明, 穩(wěn)流精度為±2.0%,穩(wěn)壓精度為±3%.由于電流取樣電阻的存在, 所以大電流輸出時(shí)存在電壓下降。對(duì)于充電器, 穩(wěn)壓發(fā)生在浮充階段, 而浮充階段電流比較小,對(duì)于電壓的精度影響不大。電路的這種特性, 可以使電池電量較低時(shí), 充電電流達(dá)到最大, 當(dāng)電池電量快接近最大存儲(chǔ)電量( 電池快要充滿) 時(shí), 充電電流開始減少, 有利于延長(zhǎng)電池使用壽命。對(duì)于充電應(yīng)用來(lái)說(shuō), 該充電模塊能夠很好地滿足使用要求。
5 結(jié)論
本文提出的均衡式充電模式能很好克服目前在EPS應(yīng)急電源中大量使用的集中式充電模式所帶來(lái)的不足。能有效地防止蓄電池組中電池間的不均衡充電現(xiàn)象以及部分電池出現(xiàn)過(guò)充和欠充現(xiàn)象, 能提高EPS應(yīng)急電源的可靠性, 延長(zhǎng)電池組的使用壽命。另外, 所設(shè)計(jì)的單元充電模塊具有恒流限壓精度高、外圍電路簡(jiǎn)單、易于生產(chǎn)、電源效率高等特點(diǎn), 能夠很好地實(shí)現(xiàn)對(duì)電池的有效充電和維護(hù)。
【上一個(gè)】 EPS應(yīng)急電源的工作原理 | 【下一個(gè)】 UPS電源系統(tǒng)的配置、安裝及維護(hù) |
^ EPS應(yīng)急電源中均衡式充電裝置的設(shè)計(jì)與實(shí)現(xiàn) |